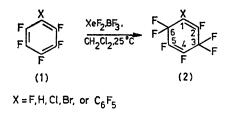
Journal of

The Chemical Society,

Chemical Communications

NUMBER 22/1978

15 NOVEMBER


Regiospecific BF₃ Catalysed Fluorine Addition to Fluoro-substituted Benzene Derivatives using Xenon Difluoride

By Stojan Stavber and Marko Zupan*

(Department of Chemistry and 'Jožef Stefan' Institute, University of Ljubljana, Ljubljana, Yugoslavia)

It has been demonstrated that xenon difluoride is an easily handled, mild reagent for fluorination of alkenes,¹ acetylenes,² aromatic³ and heteroaromatic molecules,⁴ and some organic molecules containing heteroatoms.⁵ These reactions are usually catalysed by HF or CF_3CO_2H , and the present experimental evidence suggests that the use of XeF₂ is limited to fluorination of substrates of sufficiently high reactivity. However, it has recently been demonstrated that XeF₂ reacted with 1,2-dibromoethene in the presence of boron trifluoride-diethyl ether, resulting in four products.⁶

We now report that a methylene chloride solution of hexafluorobenzene (10 mmol) reacted immediately with XeF_2 (10 mmol) at room temperature after BF₃ had been introduced into the reaction mixture. The reaction was complete in 30 min. The crude mixture was separated by

preparative g.l.c., and 80% of perfluorocyclohexa-1,4-

diene was isolated. Further, we have studied the regio-

selectivity of fluorine addition to pentafluorobenzene, its

chloro- and bromo-derivatives, and perfluorobiphenyl

SCHEME

(Scheme). In all cases the addition occurred regiospecifically, forming 1-substituted heptafluorocyclohexa-1,4-dienes (2) in yields of > 80%. Their structures were established from spectroscopic data. N.m.r. data are presented in the Table and full interpretation was aided by spin decoupling experiments.

TABLE. N.m.r. data for (2).ª

		х	2- F	3- F	4-F	5-F	6-F		
		H Cl	129 ttdd 131 ttd		156 ttdd 156 ttdd	161 ttd 161 ttd	102 dddtd 108 dddt		
х	³ J _{2,8}	${}^{3}J_{3,4}$	³ Ј _{5.6}	$^3J_{3,5}$	⁴ J _{3,4}	${}^{4}J_{4,6}$	⁴ J _{2.4}	${}^{4}J_{2,6}$	⁵ J 3.6
H Cl	21 24	$\begin{array}{c} 21\\ 21{\cdot}5 \end{array}$	$21 \\ 21 \cdot 5$	6 6	10·5 10·5	$10.5 \\ 10.5$	1 3	$10.5 \\ 10.5$	$5.25 \\ 5.25$

^a Spectra were recorded on a Jeol JNM-PS-100 spectrometer for CCl_4 solutions, with CCl_3F as internal standard, chemical shifts are given in p.p.m. and coupling constants in Hz.

The conformations of cyclohexa-1,4-dienes have been studied extensively and a planar structure was suggested.⁷ The equivalence of the two fluorine atoms on C-3 or C-6 was shown by ¹⁹F n.m.r. spectroscopy and this equivalence remained even when 1-chloroheptafluorocyclohexa-I,4diene was cooled to -135 °C, thus indicating that under these conditions the planar conformation is probably preferred.

(Received, 3rd July 1978; Com. 707.)

¹ M. Zupan and A. Pollak, J.C.S. Chem. Comm., 1973, 845; J. Org. Chem., 1976, 41, 4002; 1977, 42, 1559; Tetrahedron 1977, 33, 1017. ² M. Zupan and A. Pollak, J. Org. Chem., 1974, 39, 2646. ³ M. J. Shaw, H. H. Hyman, and R. Filler, J. Amer. Chem. Soc., 1970, 92, 6498; J. Org. Chem., 1971, 36, 2917; E. D. Bergmann, H. Selig, C. H. Lin, M. Rabinovitz, and I. Agranat, *ibid.*, 1975, 40, 3993; M. Zupan and A. Pollak, *ibid.*, p. 3794; M. Zupan, Chimia (Switz.), 1976, 30, 305; B. Šket and M. Zupan, J. Org. Chem., 1978, 43, 835. ⁴ S. P. Anand and R. Filler, J. Fluorine Chem., 1976, 7, 179; T. I. Yunasova, Zh. Obshch. Khim., 1974, 44, 956. ⁵ J. A. Gibson and A. F. Janzen, J.C.S. Chem. Comm., 1973, 739; Canad. J. Chem., 1971, 49, 2168; M. Zupan, J. Fluorine Chem., 1976, 8, 305

1976, **8**, 305.

⁶S. A. Shackelford, R. R. McGuire, and J. L. Pflug, Tetrahedron Letters, 1977, 363.

⁷ E. W. Garbisch, Jr. and M. G. Griffith, J. Amer. Chem. Soc., 1968, 90, 3590; M. C. Grossel and M. J. Perkins, J.C.S. Perkin II, 1975, 1544.